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Variational approach for minimizing Lennard-Jones energies
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A variational method for computing conformational properties of molecules with Lennard-Jones po-
tentials for the monomer-monomer interactions is presented. The approach is tailored to deal with an-
gular degrees of freedom, rotors, and consists of the iterative solution of a set of deterministic equations
with an annealing in temperature. The singular short-distance behavior of the Lennard-Jones potential
is adiabatically switched on in order to obtain stable convergence. As testbeds for the approach two dis-
tinct ensembles of molecules are used, characterized by a roughly dense-packed or a more elongated
ground state. For the latter, problems are generated from natural frequencies of occurrence of amino
acids and phenomenologically determined potential parameters; they seem to represent less disorder
than was previously assumed in synthetic protein studies. For the dense-packed problems in particular,
the variational algorithm clearly outperforms a gradient descent method in terms of minimal energies.
Although it cannot compete with a careful simulating annealing algorithm, the variational approach re-
quires only a tiny fraction of the computer time. Issues and results when applying the method to po-
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lyelectrolytes at a finite temperature are also briefly discussed.

PACS number(s): 61.41.+e, 87.15.—v, 31.15.—p

I. INTRODUCTION

The determination of configurations of long molecular
chains is often a difficult problem. For polyelectrolytes,
consisting of identical charged monomers interacting
with Coulomb repulsion forces, the ground state is
trivial—the monomers form a straight line. The chal-
lenge here lies in predicting statistical quantities for finite
temperature configurations; thus the thermodynamics of
the system is crucial. For proteins, modeled as a se-
quence of pointlike amino acids interacting with effective
pair potentials having local minima, the situation is
somewhat different. Here the ground state is nontrivial;
the energy landscape is typically plagued with many local
minima. This is the main difficulty here, while the finite
temperature properties are often just considered as minor
perturbations around the ground state.

Optimization problems with many local minima, as in
the protein case, are notoriously difficult, and elaborate
methods to search the phase space efficiently have been
devised. One such method is simulated annealing (SA)
[1], where noise is introduced to emulate a Boltzmann
distribution; this enables the system to escape from local
minima. Unfortunately, this procedure is quite demand-
ing of computer CPU time. The formal temperature in
such an approach is merely an artificial parameter; it
need not be identified with the physical temperature of
the system.
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For some optimization problems it has proven
profitable to abandon stochastic methods like SA in favor
of deterministic approaches based on the iterative solu-
tion of equations originating from a variational scheme.
Successful results with such approaches were reported for
combinatorial optimization problems that can be mapped
onto spin systems [2,3].

Variational methods have recently also been used to
compute configurational properties of polyelectrolytes.
In Refs. [4,5], harmonic trial potentials were used with
widths and positions as variational parameters. This ap-
proach works well as long as the potentials to be approxi-
mated have a milder divergence than 1/r3. In the
Coulomb case (screened or unscreened), which was treat-
ed in Refs. [4,5], this requirement is fulfilled. However,
for the strongly diverging (1/r'%) Lennard-Jones (LJ) po-
tential, occurring in protein models, a harmonic ansatz
will lead to divergent integrals, as will indeed any smooth
ansatz.

This problem could be overcome in two different ways:
In principle, one could use a modified ansatz for the trial
potential; this leads to finite integrals. However, this is
difficult to achieve while maintaining the computational
simplicity needed for a competitive algorithm. Alterna-
tively, one could keep the harmonic ansatz, and instead
modify the LJ potential to make it less singular.

The approach of Refs. [4,5] applies only to molecules
with flexible bonds, however; in this paper we will consid-
er a slightly simplified model with rigid bonds, and the
dynamics hence limited to the angular degrees of free-
dom. This simplification is motivated by the assumption
that the flexibility of bonds is of minor importance for ob-
taining an accurate spatial structure. Indeed, several cal-
culations using real chains of amino acids focus entirely
on the angular degrees of freedom [6].
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Thus we are facing a minimization problem in terms of
an energy function of angular variables. These will be
represented by a set of unit vectors, rotors, which can be
seen as continuous generalizations of discrete Ising spins.
In algorithms like gradient descent (GD) and SA, elemen-
tary moves are made with the rotors on shell, i.e., re-
stricted to the unit sphere [see Fig. 1(a)].

In Ref. [7] the variational mean-field approach, com-
monly used for discrete spin systems, was generalized by
introducing mean-field rotors; these can explore the inte-
rior of the sphere and can be interpreted as thermal aver-
ages of on-shell rotors. The method was successfully ex-
plored on the minimal energy problem for charges on a
sphere. The corresponding mean-field equations are
iteratively solved as the temperature T is lowered. Above
a critical temperature 7, the system relaxes to a fixed
point with all rotors at the center of the sphere. As the
temperature is lowered the rotors approach the ‘“shell”
[see Fig. 1(b)]. Thus, in the variational approach, rather
than fully or partly exploring the configuration space, the
variables ‘““feel” their ways off shell in a fuzzy manner to-
wards good on-shell solutions.

The main purpose of this paper is to apply a similar
technique to proteins, modeled as a chain of monomers
connected by rigid bonds and interacting via LJ poten-
tials, with the aim of finding the ground state. Any up-
dating algorithm faces problems with the steepness of the
LJ potential at short distances. We have developed an
adiabatic regularization procedure that efficiently handles
the short-distance problem, which is useful for any
method, not just the variational rotor approach.

Computational simplicity is gained, at the price of
sacrificing uniqueness and physical interpretability at
nonzero 7, by approximating expectation values accord-
ing to

(E(+-"))—>E({--)). (1)

The resulting algorithm is shown to yield a GD algo-
rithm in the T— 0 limit.

As potential LJ testbeds we do not consider real-world
proteins. For the purpose of algorithmic development
and studies it suffices to study synthetic systems. We
have chosen to study two extremes, by considering sys-

FIG. 1. (a) Elementary moves on the unit sphere. (b) Evolu-
tion of a MF rotor initialized close to the center, for T < T,.
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tems with a dense-packed or elongated ground state, re-
spectively. The latter were generated from empirical in-
dependent amino-acid probabilities and phenomenologi-
cally determined pairwise forces. As a by product, it
turns out that the resulting LY parameters give rise to far
less disordered systems than has been assumed in some
recent generic investigations of spectra and stability is-
sues [8,9].

For these testbeds the variational rotor approach is ex-
plored for problem sizes N ranging from 10 to 40. For
the dense-packed model the variational approach com-
pares favorably with GD with respect to reaching low en-
ergy states, while for the elongated model the corre-
sponding gain is smaller. For both models the CPU time
consumption is much lower than for SA. For complete-
ness, we also apply the variational rotor approach to a
polyelectrolyte (Coulomb) problem at T+0, and discuss
the limitations of the approach here.

This paper is organized as follows. In Sec. II the varia-
tional (mean-field) formalism is derived. The generation
of synthetic proteins and their LJ potential couplings are
discussed in Sec. III. The regularization of the LJ poten-
tial is treated in Sec. IV. In Sec. V we present the numer-
ical procedures and results for the LJ potential, and Sec.
VI contains the polyelectrolyte application. A brief sum-
mary and outlook can be found in Sec. VII.

II. VARIATIONAL APPROACH

A. Proper variational approach

Limiting ourselves to angular degrees of freedom, we
consider an energy function

E=E(s,...,sy) (2)

to be minimized with respect to the directions of a set of
N distinct D-dimensional unit vectors s; (rotors),

Is;|=1. (3)

In instances where the energy landscape contains many
local minima, one would typically employ a stochastic
technique like SA. In [7] a mean-field method was
developed and numerically explored for the problem of
placing charges on a sphere. We will here generalize this
technique, and apply it to the case of a protein model
with LJ pair potentials.

For spin systems the mean-field approximation can be
derived in (at least) three conceptionally distinct ways;
from a variational principle, from a saddle-point approxi-
mation, or using an intuitive physical argument. We will
here briefly discuss the variational derivation; for the
saddle-point approach we refer the reader to, e.g., Ref.
[71.

The variational approach is based on an effective ener-
gy ansatz E},, which is linear in the spins s;,

EV(SI,...,SN)Z—EU,-’S,‘ , 4)

where the (real, unconstrained) coefficient vectors u; are
to be considered as variational parameters.
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Based on the corresponding Boltzmann distribution
[ <exp(—E, /T)], a free energy F}, can be defined

FV(ul,.v.,UN):<E>V_ST, (5)

where S is the entropy. F), is bounded from below by the
true equilibrium free energy F, based on the proper
Boltzmann distribution «exp(—E /T).

The variational free energy F), can be written as

Fy=—TInZ,+{E—E,),, (6)

where Z, is the variational partition function, while { )
refers to averages with respect to the variational
Boltzmann distribution. By minimizing F, with respect
to the parameters u;, the variational equations result.
These are best expressed in terms of the mean fields

Vi=<s,->V, (7)

which approximate the exact averages {s;). The mean
fields are simple functions of the coefficients u;,

u

v, =

—g(lu;|/T)=g(u,/T), (8)
|ui|

where for the case of three dimensions g is given by
g (x)=coth(x)—1/x; its graph is shown in Fig. 2. Note
that g (0)=0, and that g (x)— 1, when x — o0 ; this gener-
ic qualitative behavior holds for any number of dimen-
sions, and implies in particular that as 7—0 the mean-
field (MF) rotors {v;} go on shell, and can be identified
with a low-energy configuration {s; }.

The variation of the entropy term ST yields

d(ST)=— S u,dv, , 9)

and we obtain the variational equations in the form

v,-:g(—Vv,(E)V/T). (10)

B. Modified variational approach

For a strongly singular potential, like LJ, things are
complicated by the fact that { E ), is a diverging integral.
In other cases, the corresponding integral may be conver-

[—
0.8
0.4’.
[o)
(o] 2 4 6 8 X

FIG. 2. The function g (x) for the case of three dimensions.

gent, but difficult to evaluate. These difficulties can be
remedied by making the apparently crude replacement

(E(Sl,. . ’SN)>V_’E(<S])V’ ... a<SN>V)

=E(vy,...,vy) (11

in the expression for Fj. This is justified as long as we
are only interested in the ground state, which dominates
for T—0 where the fluctuations vanish and the above ap-
proximation becomes exact. For a finite 7, the replace-
ment in Eq. (11) is more questionable, and its use must be
justified by other means.

Minimization of the thus modified F), with respect to
the trial parameters u; (or v;) yields a modified set of
equations

V,-=g['—V,»E(v1,---,vN)/T] . (12)

In principle, these could be iterated to find a (local)
minimum of F,.

However, a question of uniqueness arises: since E real-
ly is defined only on shell, i.e., for Is,- | =1, off-shell values
are not uniquely defined. By adding, e.g., a term «vZ—1
which is zero on shell, we can alter the off-shell behavior
of E and hence the solutions to Eq. (12). Thus these
make sense only in the 7—O0 limit, where the v, are
forced on shell, due to the asymptotic behavior of g ( ).

Another problem is a possible lack of stability of the
iterative dynamics of Eq. (12). This can be remedied by
formally adding a stabilizing term to the energy of the
form —B/23,v?, which is just a constant on shell.

We then obtain a modified set of variational equations

W, =pv,~V,E(v,...,Vy), (13)

(14)

to be iterated. For T— 0 this turns into a kind of an (on-
shell) gradient descent with 8 corresponding to a recipro-
cal step size. This of course could have been obtained in
a much simpler way. However, we aim at an annealing
approach: start iterating with a high T, for which the
modified F) typically is minimized by a fixpoint with
v;~0. Then keep iterating while slowly letting 7T"—O0.
The value of B should be chosen to stabilize the iterative
dynamics. The idea is that with the soft high T dynam-
ics, the v; are allowed to short cut through an interpolat-
ing (off-shell) space. As T slowly falls to zero, the v; are
eventually forced on shell, and finally a local minimum of
the on-shell energy function E(s;) crystallizes out. This
way, one can hope to obtain better minima than by just
using a gradient descent.

III. LENNARD-JONES POTENTIAL

In models of proteins one often uses a potential be-
tween the individual atoms consisting in a sum of “bond-
ed” interactions and ‘“nonbonded” ones. The latter con-
sist of Coulomb and LJ interactions between all the
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FIG. 3. The Lennard-Jones potential [Eq. (15)] and a regular-
ized version [Eq. (18)] as full and dashed lines, respectively
(R=1;4=2).

atoms.

It has been argued [10] that a reasonable simplification
results from considering the amino acids as effective
monomers, interacting via effective potentials. We will
focus on effective LJ potentials. Crucial physical proper-
ties like hydrophobicity then are efficiently incorporated
by a suitable choice of LI parameters.

The LJ potential between two monomers k and [ is
given by

_ Ry Ay

Vkl(r)_ﬁ_ 6 (15)

An example is shown in Fig. 3. It is short range, and has
a very strong (and unphysical) short-distance repulsion.
If A;;>0it has a local minimum located at

2R, |
Ay

0
Tri =

(16)

The energy to be minimized is given by the sum of all
pair potentials,

E=2Vk1(rk,) . (17)
kl

A. Regularizing the r — 0 behavior

The very steep short-distance behavior of the LJ poten-
tial might cause problems for updating in minimization
algorithms—not only for our variational approach but
also for, e.g., some Monte Carlo (MC) algorithms. A
convenient way of controlling the short-distance singular-
ity is by using a modified potential (see Fig. 3)

V)= Vi In(1 4+ Vi) = Vi) (18)

where V), is the minimum value of V},(#). The modified
potential only has a logarithmic singularity at the origin,
and yields the same result in the limit y —O0 as V. Fur-
thermore, the position of the minimum is preserved for
all values of y. The idea is to start with ¥ >0 and then
gradually decrease ¥ to 0. In minimization schemes of
annealing type, where noise is introduced via a tempera-
ture T, the decrease in ¥ should be coupled to the anneal-
ing in T (see Sec. IV).
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FIG. 4. Distribution of A,; according to option B.

B. Coupling distributions

We choose the LJ parameters R, and A4, in two
different ways: (A) identical values for all monomers,
corresponding to dense packing; and (B) using empirical
couplings for a random sequence of amino acids, based
on empirical frequencies of occurrence.

(A) For all pairs, set R;;=1 and A4,,=2, leading to
rey=1. This choice implies an approximately dense-
packed ground state.

(B) Choose Ry, and 4, in a phenomenological way as
follows. Generate a random sequence of amino acids ac-
cording to the known frequencies of occurrence in pro-
teins [11]. The various values for R;; and A4,, are derived
from the empirical effective LJ couplings given in [10].
The resulting 4, distribution is shown in Fig. 4. We
note that while this distribution exhibits a considerable
width, it is far from being as dramatic as in the toy mod-
els proposed in Refs. [8,9], where R,,=1 and
A =3.8+6.0 rand[0,1] were used.

IV. VARIATIONAL ROTOR ALGORITHM

We next briefly describe how we implement Egs. (13)
and (14) for the regularized LJ potential, Egs. (15) and
(18). The nonuniqueness due to Eq. (11), and the existence
of unique pairwise local minima r, in Eq. (16), suggests a
modified distance expression
2+ (7'131 )2
k=1

S v —v?), (19)

i€o(kl)

>

i€o(kl)

2
Tk

TABLE 1. Parameter settings for the variational algorithm
(the first three apply also to GD).

Case B Po k, T, kr
dense 25N 0.5 0.99 B/3 0.995
real 100N 0.5 0.99 B/3 0.995
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TABLE II. Approximate CPU time consumption for model
B in seconds on a DEC Alpha computer workstation for the
different approaches. Similar numbers hold for model 4.

CPU time
Approach N=10 20 40
GD 12 70 700
Var. 15 120 1500
MC 4000 25000 200000

where o(kl) denotes the set of bonds connecting mono-
mers k and /. To avoid instability in the dynamics, 7Y, is
maximized to V'|I —k|; this value is also used for a nega-
tive A;;. On shell, this yields the correct distance, while
at the beginning of the simulation when v; =0, most pairs
are formally at their distance of minimum energy. The
regulator ¥ is chosen to depend on Ry; as

_ 47 (20)

Y
K R

where 7 is the same for all pairs; this leads to correct rel-
ative normalization of the regularized potentials at short
distances.

The resulting variational equations (13) and (14) read

. (r9)?
(2R, —A,7,) 2vj__|k—l|vi
u;=pv;+6 3 /52 y p) ’
7 @2y p 12— R;’*r‘f;l l
(21)
v,=g(u;/T), (22)

where o denotes a connected subset of the bonds, that in-
cludes bond i.

The variational algorithm then takes the following
form.
1. Initialize.

1.1. Set T=T, and ¥=7,.

1.2. Initialize v; to small (~0.01) random vectors.

2. Repeat until [1/(N —1)]3v?>0.999 99.
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2.1. Update all v,’s according to Egs. (21) and (22).

2.2 Anneal: T =k,T; =k, 7

The choice of parameter values are shown in Table I;
for the stabilizer S the choice is motivated by the empiri-
cal observation that the 3 values required for high quality
solutions scale linearly with N. In the gradient descent
limit, where T =0 and the rotors are on shell,
v;—u;/|u;|, and B plays the role of an inverse step length.

V. NUMERICAL RESULTS FOR THE LJ
POTENTIAL

We have compared the performance of the variational
rotor algorithm to that of (i) a GD algorithm and (ii) a
SA method —both for model A4, in which the final struc-
ture will be close to a dense-packed configuration, and for
the phenomenological model B. The GD method was
chosen as the T =0 limit of the variational algorithm,
with identical parameter settings for B, ¥, and k, (cf.
Table I); thus, the regularized LJ potentials were also
used here. The SA simulations were made using Metrop-
olis updating, with an initial temperature T, given by
three times the modulus of the lowest energy achieved by
the variational method in case A (for simplicity, the same
T, was also used for the B problems of the same size).
With an annealing rate per sweep of kr=0.999 99, ap-
proximately 2.5 X 10° sweeps were required, with a sweep
defined by N attempted single-rotor updates.

These choices of parameters and number of sweeps
were based on reasonable trade-offs between solution
quality and consumption of CPU time. The reference
values for the ground-state energies thus obtained by SA,
at the price of very high CPU time consumption (see
Table II), are not frequently equaled by the energies ob-
tained using the two deterministic approaches.

However, when performing multiple runs with the
variational approach using different seeds, one does hit
solutions comparable with those of SA. Hence the
overall advantage, taking CPU time consumption into ac-
count, is very likely to be in favor of the variational ap-
proach.

In model A (dense packed) the variational algorithm
clearly outperforms the GD one (see Table III). Howev-
er, for the slightly more realistic model B the two ap-
proaches seem comparable. A possible explanation for
this is that the main advantage of the variational ap-

TABLE III. Average performance differences. The number of runs refers to the variational and GD
approaches. For each problem a single run was performed with SA.

No. of sweeps

No. of No. of
Case N (Egp—E.,.» (E,y;)—Ega problems runs Var. GD
A 10 0.8 = 0.1 1.0 £ 0.1 1 100 2200 550
20 3.0 0.4 4.8 0.2 1 100 2300 1300
40 7.7 0.8 6.4 0.3 1 100 3000 4400
B 10 0.6 0.5 6.0 0.9 10 10 4100 3800
20 2.3 1.2 14.9 1.8 10 10 9200 10400
40 9.1 4.3 59.7 6.1 5 10 16 100 15300
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proach is the extra degrees of freedom since the rotors
can go off shell; this facilitates the escape from local mini-
ma, which probably is more important in the dense-
packed case.

VI. POLYELECTROLYTES

In this section we briefly discuss how the variational
rotor approach can be applied to the case of a polyelec-
trolyte at a finite temperature. Theoretically, the ap-
proach suffers from a certain arbitrariness, but it gives
quite good results for the case of unscreened Coulomb
forces.

The interaction energy for a polyelectrolyte consisting
of N monomers with Coulombic repulsion forces is given

=31 (23)

ki Tk

The variational average (E ), is then perfectly conver-
gent. It is, however, difficult to evaluate, and we will for
that reason here also employ the simplifying trick of Eq.
(11). In this case, the resulting nonuniqueness is used to
replace v? by 1 everywhere; thus 7,; will evaluate to

rk,=\/lk——l|+ Sviv;, (24)
i#j

where i and j are restricted to the set of bonds linking
monomers k and /.

Then it is not a priori clear to what degree the results
will make sense for a finite 7. However, the replacement
v?—1 gives the correct result for {r% ), and we argue
that it should also be a fair approximation for
(1/ry Yv—it is certainly correct for T—0 (|v;|—1),
and qualitatively correct for large N  when
T — oo (v;—0).

Thus, armed with some confidence, we have used this
approach to generate configurations in terms of {v;} for
polyelectrolytes ranging in size from 20 to 1024, by
iterating equations analogous to Egs. (21) and (22). We
have chosen to characterize the configurations by their
rms end-to-end distance .., which in the variational ap-
proach is given by

rZ=(N—1D+ 3 v;-v; . (25)
i#j
As can be seen from Table IV, the results are in surpris-
ingly good agreement with Monte Carlo (MC) data.

We have also attempted a similar comparison for poly-
mers with a screened Coulomb interaction. The results in
that case are not nearly as good as in the unscreened case,
and it is not difficult to see why. With screening, the in-
teraction turns short range, and for large molecules
essentially all the rotors will be identical in size and direc-
tion, v; =v, with v independent of N. Thus, for the end-
to-end distance, we obtain

rezez(N—l)+—-—————~(N 1)2(N 2) 2 ,

which goes like N2 (unless v=0, which happens for high

(26)
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TABLE 1V. End-to-end distance r. for polyelectrolytes.
Comparison of variational results with MC data for different N
for T=0.837 808 (room temperature). The last column lists rel-
ative deviations between the variational method and MC results
in percentage. The errors in the MC data are approximately
0.1%.

N Var. MC dev (%)
20 11.53 12.06 —4.6
40 26.80 26.43 1.3
80 59.05 57.07 3.5

160 125.8 122.1 3.0

256 207.6 202.5 2.5

512 429.5 422.0 1.4

1024 880.3 870.2 1.1

enough 7). Thus r,, will scale like N, which is clearly un-
physical for a short-range potential. This failure is prob-
ably more due to the linear ansatz for E, being unsuit-
able for this problem, and not so much to the crudeness
of the additional approximation of Eq. (11).

VII. SUMMARY

We have developed a variational approach for finding
approximate energy minima for proteins modeled by po-
lymers with Lennard-Jones pair interactions between
pointlike monomers. It has been numerically explored
for two cases—dense-packed systems and more elongat-
ed ones.

In the latter case, phenomenological pair potentials
were used with random amino-acid sequences based on
natural frequencies of occurrence. This leads to effective
coupling distributions far more narrow than those com-
monly assumed in generic investigations of spectra and
stability issues [9,8].

For dense-packed systems the variational performance
compares favorably with a gradient descent method with
respect to solution quality, whereas for the more elongat-
ed ones the gain is very small. We interpret this
difference as being due to the fact that the elongated
chain provides less of an optimization challenge as com-
pared to the dense-packed ones. Hence there is a less
pronounced difference between the methods.

The deterministic variational method fails to find in a
consistent way the low energy states produced by a sto-
chastic simulated annealing algorithm when used in a sin-
gle run mode. However, since simulated annealing re-
quires a factor 100-200 more in CPU time consumption,
multiple runs with the variational method are relatively
efficient.

As a by product we have devised a regularization of
the Lennard-Jones potential, where the short-distance
steepness is gradually turned on in the updating process,
thereby avoiding ill-behaved dynamics. More determinis-
tic (and some stochastic) methods will benefit from such a
regularization.

The variational method has also been applied to the
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case of polyelectrolytes at nonzero temperature, where
the procedure is somewhat more ambiguous. For the
case of unscreened repulsions the method yields good re-
sults as judged by MC, whereas it breaks down for the
screened case.
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